
Federation Feeder Documentation
Release 2.1.1

Leif Johansson

Nov 08, 2023

DOCUMENTATION

1 Installation 3
1.1 Before you install . 3
1.2 Verifying . 4
1.3 Installing . 4
1.4 Upgrading . 4
1.5 Next Steps . 5

2 Quick Start Instructions 7

3 Running pyFF 9
3.1 Batch mode: pyff . 9
3.2 WSGI application: pyffd . 9
3.3 The structure of a pipeline . 11

4 Deploying pyFF 13
4.1 Running pyFF in docker . 13
4.2 Running pyFF in production . 13

5 Examples 17
5.1 Example 1 - A simple pull . 17
5.2 Example 2 - Grab the IdPs from edugain . 17
5.3 Example 3 - Use an XRD file . 19
5.4 Example 4 - Sign using a PKCS#11 module . 21

6 Extending pyFF 23

7 Frequently Asked Questions 25
7.1 I get ‘select is empty’ but I know my xpath should match. What is wrong? 25

8 pyff package 27
8.1 Submodules . 28

Index 29

i

ii

Federation Feeder Documentation, Release 2.1.1

Author
Leif Johansson <leifj@sunet.se>

Release
2.1.1

pyFF is a simple but reasonably complete SAML metadata processor. It is intended to be used by anyone who needs
to aggregate, validate, combine, transform, sign or publish SAML metadata.

pyFF is used to run infrastructure for several identity federations of signifficant size including edugain.org.

pyFF supports producing and validating digital signatures on SAML metadata using the pyXMLSecurity package
which in turn supports PKCS#11 and other mechanisms for talking to HSMs and other cryptographic hardware.

pyFF is also a complete implementation of the SAML metadata query protocol as described in draft-young-md-query
and draft-young-md-query-saml and implements extensions to MDQ for searching which means pyFF can be used as
the backend for a discovery service for large-scale identity federations.

Possible usecases include running an federation aggregator, filtering metadata for use by a discovery service, generating
reports from metadata (eg certificate expiration reports), transforming metadata to add custom elements.

DOCUMENTATION 1

Federation Feeder Documentation, Release 2.1.1

2 DOCUMENTATION

CHAPTER

ONE

INSTALLATION

1.1 Before you install

Make sure you have a reasonably modern python. pyFF is developed using 3.6 but 3.7 will probably become the norm
soon. It is recommended that you install pyFF into a virtualenv

Start by installing some basic OS packages. For a debian/ubuntu install:

apt-get install build-essential python-dev libxml2-dev libxslt1-dev libyaml-dev

and if you’re on a centos system (or other yum-based systems):

yum install python-devel libxml2-devel libxslt-devel libyaml-devel
pip install pyyaml
yum install make gcc kernel-devel kernel-headers glibc-headers

If you want to use OS packages instead of python packages from pypi then consider also installing the following
packages before you begin:

1.1.1 With Sitepackages

This method re-uses existing OS-level python packages. This means you’ll have fewer worries keeping your python
environment in sync with OS-level libraries.

apt-get install python-virtualenv
virtualenv python-pyff

Choose this method if you want the OS to keep as many of your packages up to date for you.

1.1.2 Without Sitepackages

This method keeps everything inside your virtualenv. Use this method if you are developing pyFF or want to run
multiple python-based applications in parallell without having to worry about conflicts between packages.

cd $HOME
apt-get install python-virtualenv
virtualenv -p python3 python-pyff --no-site-packages

Choose this method for maximum control - ideal for development setups.

3

Federation Feeder Documentation, Release 2.1.1

1.2 Verifying

To verify that python 3.6 is the default python in the pyFF environment run

python --version

The result should be Python 3.6 or later.

To verify that the version of pip you have is the latest run.

pip install --upgrade pip

1.3 Installing

Now that you have a virtualenv, its time to install pyFF into it. Start by activating your virtualenv:

source python-pyff/bin/activate

Next install pyFF:

cd $HOME
cd pyFF
LANG=en_US.UTF-8 pip install -e .

This will install a bunch of dependencies and compile bindings for both lxml, pyyaml as well as pyXMLSecurity. This
may take some time to complete. If there are no errors and if you have the pyff binary in your $PATH you should be
done.

cd $HOME
mkdir pyff-config
cd pyff-config

1.4 Upgrading

Unless you’ve made modifications, upgrading should be as simple as running

source python-pyff/bin/activate
pip install -U pyff

This should bring your virtualenv up to the latest version of pyff and its dependencies. You probably need to restart
pyffd manually though.

4 Chapter 1. Installation

Federation Feeder Documentation, Release 2.1.1

1.5 Next Steps

Now that you hopefully have a working installation of pyFF you are ready to start exploring all the ways pyFF can help
you manage metadata. It may be good to go read the Quick Start Instructions now but in general pyFF should be run in
the same directory that contains a pipeline in yaml format and depending on the nature of the pipeline additional files
may be needed including things like. . .

• A list of metadata URLs.

• A set of files containing metadata URLs - eg XRD or MDSL files.

• A key and crt signing key pair which can be generated from genkey.sh in the scripts directory.

1.5. Next Steps 5

Federation Feeder Documentation, Release 2.1.1

6 Chapter 1. Installation

CHAPTER

TWO

QUICK START INSTRUCTIONS

There are a lot of options and knobs in pyFF - in many ways pyFF is a toolchain that can be configured to do a lot of
tasks. In order to start exploring pyFF it is best to start with a simple example. Assuming you have read the installation
instructions and have created and activated a virtualenv with pyFF installed do the following:

First create an empty directory and cd into it. In the directory create a file called edugain.fd with the following contents:

- load:
- http://mds.edugain.org

- select:
- stats:

Now run pyFF like this:

pyff edugain.fd

You should see output like this after a few seconds depending on the speed of your Internet connection you should see
something like this:

total size: 5568
selected: 5567

idps: 3079
sps: 2487

Congratulations - you have successfully fetched, parsed, selected and printed stats for the edugain metadata feed. This
is of course not a useful example (probably) but it illustrates a few points about how pyFF works:

• pyFF configuration is (mostly) in the form of yaml files

• The yaml file reprsents a list of instructions which are processed in order

• The load statement retrieves (and parses) SAML metadata from edugain.org

• The select statement is used to form an active document on which subsequent instructions operate

• Finally, the stats statement prints out some information about the current active document.

Next we’ll learn how to do more than print statistics.

7

Federation Feeder Documentation, Release 2.1.1

8 Chapter 2. Quick Start Instructions

CHAPTER

THREE

RUNNING PYFF

There are two ways to use pyFF:

a “batch” command-line tool called pyff # a wsgi application you can use with your favorite wsgi server - eg gunicorn

In either case you need to provide some configuration and a pipeline - instructions to tell pyFF what to do - in order
for anything intersting to happen. In the Quick Start Instructions guide you saw how pyFF pipelines are constructed
by creating yaml files. The full set of piplines is documented in pyff.builtins. When you run pyFF in batch-mode
you typically want a fairly simple pipline that loads & transforms metadata and saves some form of output format.

3.1 Batch mode: pyff

The typical way to run pyFF in batch mode is something like this:

pyff [--loglevel=<DEBUG|INFO|WARN|ERROR>] pipeline.yaml

For various historic reasons the yaml files in the examples directory all have the ‘.fd’ extension but pyFF doesn’t care
how you name your pipeline files as long as they contain valid yaml.

This is in many ways the easiest way to run pyFF but it is also somewhat limited - eg it is not possible to produce an
MDQ server using this method.

3.2 WSGI application: pyffd

Development of pyFF uses gunicorn to test but othe wsgi servers (eg apache mod-wsgi etc) should work equally well.
Since all configuration of pyFF can be done using environment variables (cf pyff.constants:Config) it is pretty easy to
integrate in most environments.

Running pyFFd using gunicorn goes something like this (incidentally this is also how the standard docker-image
launches pyFFd):

gunicorn --workers=1 --preload --bind 0.0.0.0:8080 -e PYFF_PIPELINE=pipeline.yaml --
→˓threads 4 --worker-tmp-dir=/dev/shm pyff.wsgi:app

The wsgi app is a lot more sophisticated than batch-mode and in particular interaction with workers/threads in gunicorn
can be a bit unpredictable depending on which implementation of the various interfaces (metadata stores, schedulers,
caches etc) you choose. It is usually easiest to use a single worker and multiple threads - at least until you know what
you’re doing.

The example above would launch the pyFF wsgi app on port 8080. However using pyFF in this way requires that you
structure your pipeline a bit differently. In the name of flexibility, most of the request processing (with the exception of

9

Federation Feeder Documentation, Release 2.1.1

a few APIs such as webfinger and search which are always available) of the pyFF wsgi app is actually delegated to the
pipeline. Lets look at a basic example:

- when update:
- load:

- http://mds.edugain.org
- when request:

- select:
- pipe:

- when accept application/samlmetadata+xml application/xml:
- first
- finalize:

cacheDuration: PT12H
validUntil: P10D

- sign:
key: sign.key
cert: sign.crt

- emit application/samlmetadata+xml
- break

- when accept application/json:
- discojson
- emit application/json
- break

Lets pick this pipeline apart. First notice the two when instructions. The pyff.builtins:when pipe is used to conditionally
execute a set of instructions. There is essentially only one type of condition. When processing a pipeline pyFF keeps
a state variable (a dict-like object) which changes as the instructions are processed. When the pipeline is launched the
state is initialized with a set of key-value pairs used to control execution of the pipeline.

There are a few pre-defined states, in this case we’re dealing with two: the execution mode update or request (we’ll
get to that one later) or the accept state used to implement content negotiation in the pyFF wsgi app. In fact there are
two ways to express a condition for when: with one parameter in which case the condition evaluates to True iff the
parameter is present as a key in the state object, or with two parameters in which case the condition evaluates to True
iff the parameter is present and has the prescribed value.

Looking at our example the first when clause evaluates to True when update is present in state. This happens when
pyFF is in an update loop. The other when clause gets triggered when request is present in state which happens when
pyFF is processing an incoming HTTP request.

There ‘update’ state name is only slightly “magical” - you could call it “foo” if you like. The way to trigger any branch
like this is to POST to the /api/call/{state} endpoint (eg using cURL) like so:

curl -XPOST -s http://localhost:8080/api/call/update

This will trigger the update state (or foo if you like). You can have any number of entry-points like this in your pipeline
and trigger them from external processes using the API. The result of the pipeline is returned to the caller (which means
it is probably a good idea to use the -t option to gunicorn to increase the worker timeout a bit).

The request state is triggered when pyFF gets an incoming request on any of the URI contexts other than /api and
/.well-known/webfinger, eg the main MDQ context /entities. This is typically where you do most of the work in a pyFF
MDQ server.

The example above uses the select pipe (pyff.builtins.select()) to setup an active document. When in request
mode pyFF provides parameters for the request call by parsing the query parameters and URI path of the request
according to the MDQ specification. Therefore the call to select in the pipeline above, while it may appear to have no
parameters, is actually “fed” from the request processing of pyFF.

10 Chapter 3. Running pyFF

Federation Feeder Documentation, Release 2.1.1

The subsequent calls to when implements content negotiation to provide a discojuice and XML version of the metadata
depending on what the caller is asking for. This is key to using pyFF as a backend to the thiss.io discovery service.
More than one content type may be specified to accommodate noncompliant MDQ clients.

The rest of the XML “branch” of the pipeline should be pretty easy to understand. First we use the pyff.builtins.
first() pipe to ensure that we only return a single EntityDescriptor if our select match a single object. Next we set
cacheDuration and validUntil parameters and sign the XML before returning it.

The rest of the JSON “branch” of the pipeline is even simpler: transform the XML in the active document to discojson
format and return with the correct Content-Type.

3.3 The structure of a pipeline

Pipeline files are yaml documents representing a list of processing steps:

- step1
- step2
- step3

Each step represents a processing instruction. pyFF has a library of built-in instructions to choose from that include
fetching local and remote metadata, xslt transforms, signing, validation and various forms of output and statistics.

Processing steps are called pipes. A pipe can have arguments and options:

- step [option]*:
- argument1
- argument2
...

- step [option]*:
key1: value1
key2: value2
...

Typically options are used to modify the behaviour of the pipe itself (think macros), while arguments provide runtime
data to operate on. Documentation for each pipe is in the pyff.builtins Module. Also take a look at the Examples.

3.3. The structure of a pipeline 11

Federation Feeder Documentation, Release 2.1.1

12 Chapter 3. Running pyFF

CHAPTER

FOUR

DEPLOYING PYFF

4.1 Running pyFF in docker

4.1.1 Building a docker image

There is a build environment for docker available at https://github.com/SUNET/docker-pyff. In order to build your
own docker image, clone this repository and use make to build the latest version of pyFF:

git clone https://github.com/SUNET/docker-pyff
...
cd docker-pyff
make

At the end of this you should be able to run pyff:<version> where <version> will depend on what is currently the latest
supported version. Sometimes a version of docker is uploaded to dockerhub but there is no guarantee that those are
current or even made by anyone affiliated with the pyFF project.

4.1.2 Running the docker image

The docker image is based on debian:stable and contains a full install of pyFF along with most of the optional compo-
nents including PyKCS11. If you start pyFF with no arguments it launches a default pipeline that fetches edugain and
exposes it as an MDQ server:

docker run -ti -p 8080:8080

A pyFF MDQ service should now be exposed on port 8080. If you are running the old pyFF 1.x branch you may also
have access to the default admin interface. If you are running pyFF 2.x you can now point an MDQ frontend to to port
8080 - eg mdq-browser.

4.2 Running pyFF in production

There are several aspects to consider when deploying pyFF in production. Sometimes you want to emphasize simplicity
and then you can simply run a pyFF instance and combine with a management application (eg mdq-browser) and a
discovery service to quickly setup a federation hub. This model is suitable if you are setting up a collaboration hub or
an SP proxy that needs to keep track of a local metadata set along with a matching discovery service.

13

https://github.com/SUNET/docker-pyff

Federation Feeder Documentation, Release 2.1.1

4.2.1 Scenario 1: all-in-one

If you are using docker you might deploy something like that using docker-compose (or something similar implemented
using k8s etc). Assuming your.public.domain is the public address of the service you wish to deploy the follwoing
compose file would give you a discovery service on port 80 and an admin UI on port 8080.

Take care to check which version of the software components is the latest and greatest (and/or apropriate for your
situation) and modify accordingly.

version: "3"
services:
mdq-browser:
image: docker.sunet.se/mdq-browser:1.0.1
container_name: mdq_browser
ports:

- "8080:80"
environment:

- MDQ_URL=http://pyff
- PYFF_APIS=true

thiss:
image: docker.sunet.se/thiss-js:1.1.2
container_name: thiss
ports:

- "80:80"
environment:

- MDQ_URL=http://pyff/entities/
- BASE_URL=https://your.public.domain
- STORAGE_DOMAIN=your.public.domain
- SEARCH_URL=http://pyff/api/search

pyff:
image: docker.sunet.se/pyff:stable
container_name: pyff-api

4.2.2 Scenario 2: offline signing

Sometimes security is paramount and it may be prudent to firewall the signing keys for your identity federation but
you still want to provide a scalable MDQ service. The MDQ specification doesn’t actually require online access to the
signing key. It is possible to create an MDQ service that only consists of static files served from a simple webserver or
even from a CDN.

The pyFF wsgi server implements the webfinger protocol as described in RFC 7033 and this endpoint can be use to list
all objects in the MDQ server. A simple script provided in the scripts directory of the pyFF distribution uses webfinger
and wget to make an isomorphic copy of the pyFF instance.

Run an instance of pyff on a firewalled system with access to the signing keys - eg via an HSM # Use the script to
mirror the pyFF instance to a local directory and copy that directory over to the public webserver or CDN

docker run -d -p 8080:8080 pyff:1.1.0
docker run -ti pyff:1.1.0 mirror-mdq.sh -A http://localhost:8080/ /some/dir

This will create an offline copy of http://localhost:8080/ in /some/dir. You can use rsync+ssh syntax instead (eg
user@host:/some/dir) to make a copy to a remote host using rsync+ssh. This way it is possible to have a lot of control
over how metadata is generated and published while at the same time providing a scalable public interface to your
metadata feed.

14 Chapter 4. Deploying pyFF

https://datatracker.ietf.org/doc/html/rfc7033.html
http://localhost:8080/
mailto:user@host

Federation Feeder Documentation, Release 2.1.1

Currently the script traverses all objects in the pyFF instance everytime it is called so allow for enough time to sign
every object when you setup your mirror cycle.

4.2. Running pyFF in production 15

Federation Feeder Documentation, Release 2.1.1

16 Chapter 4. Deploying pyFF

CHAPTER

FIVE

EXAMPLES

Here are some more example pipelines. Most of these are designed for batch-mode pyff but the concepts can be easily
included in wsgi-style pipelines with multiple entry-points.

5.1 Example 1 - A simple pull

Fetch SWAMID metadata, split it up into EntityDescriptor elements and store each as a separate file in /tmp/swamid-
2.0.xml.

- load:
- http://mds.swamid.se/md/swamid-2.0.xml

- select
- publish: "/tmp/swamid-2.0.xml"
- stats

This is a simple example in 3 steps: load, select, store and stats. Each of these commands operate on a metadata
repository that starts out as empty. The first command (load) causes a URL to be downloaded and the SAML metadata
found there is stored in the metadata repository. The next command (select) creates an active document (which in this
case consists of all EntityDescriptors in the metadata repository). Next, (publish) is called which causes the active
document to be stored in an XML file. Finally the stats command prints out some information about the metadata
repository.

This is essentially a 1-1 operation: the metadata loaded is stored in a local file. Next we’ll look at a more complex
example that involves filtering and transformation.

5.2 Example 2 - Grab the IdPs from edugain

Grab edugain metadata, select the IdPs (using an XPath expression), run it through the built-in ‘tidy’ XSL stylesheet
(cf below) which cleans up some known problems, sign the result and write the lot to a file.

- load:
- http://mds.edugain.org
- edugain-signer.crt

- select:
- "http://mds.edugain.org!//md:EntityDescriptor[md:IDPSSODescriptor]"

- xslt:
stylesheet: tidy.xsl

- finalize:
cacheDuration: PT5H

(continues on next page)

17

Federation Feeder Documentation, Release 2.1.1

(continued from previous page)

validUntil: P10D
- sign:

key: sign.key
cert: sign.crt

- publish: /tmp/edugain-idp.xml
- stats

In this case the select (which uses an xpath in this case) picks the EntityDescriptors that contain at least one IDPSSODe-
scriptor - in other words all IdPs. The xslt command transforms the result of this select using an xslt transformation. The
finalize command sets cacheDuration and validUntil (to 10 days from the current date and time) on the EntitiesDescrip-
tor element which is the result of calling select. The sign command performs an XML-dsig on the EntitiesDescriptor.

For reference the ‘tidy’ xsl is included with pyFF and looks like this:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">

<xsl:template match="@ID"/>
<xsl:template match="@Id"/>
<xsl:template match="@xml:id"/>
<xsl:template match="@validUntil"/>
<xsl:template match="@cacheDuration"/>
<xsl:template match="@xml:base"/>
<xsl:template match="ds:Signature"/>
<xsl:template match="md:OrganizationName|md:OrganizationURL|md:OrganizationDisplayName

→˓">
<xsl:if test="normalize-space(text(()) != ''">

<xsl:copy><xsl:apply-templates select="node()|@*"/></xsl:copy>
</xsl:if>

</xsl:template>

<xsl:template match="text()|comment()|@*">
<xsl:copy/>

</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="node()|@*"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

18 Chapter 5. Examples

Federation Feeder Documentation, Release 2.1.1

5.3 Example 3 - Use an XRD file

Sometimes it is useful to keep metadata URLs and signing certificates used for validation in a separate file and pyFF
supports XRD-files for this purpose. Modify the previous example to look like this:

- load:
- links.xrd

- select: "!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:

stylesheet: tidy.xsl
- sign:

key: sign.key
cert: sign.crt

- publish: /tmp/idp.xml
- stats

Note that in this case the select doesn’t include the http://mds.edugain.org prefix before the ‘!’-sign. This causes the
xpath to operate on all source URLs, rather than just the single source http://mds.edugain.org . It would have been
possible to call select with multiple arguments, each using a different URL from the file links.xrd which contains the
following:

<?xml version="1.0" encoding="UTF-8"?>
<XRDS xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">

<XRD>
<Subject>http://mds.swamid.se/md/swamid-2.0.xml</Subject>
<Link rel="urn:oasis:names:tc:SAML:2.0:metadata" href="http://mds.swamid.se/md/

→˓swamid-2.0.xml">
<Title>SWAMID</Title>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:X509Data>
<ds:X509Certificate>
MIIFyzCCA7OgAwIBAgIJAI9LJsUJXDMVMA0GCSqGSIb3DQEBCwUAMHwxCzAJBgNV
BAYTAlNFMRIwEAYDVQQIDAlTdG9ja2hvbG0xEjAQBgNVBAcMCVN0b2NraG9sbTEO
MAwGA1UECgwFU1VORVQxDzANBgNVBAsMBlNXQU1JRDEkMCIGA1UEAwwbU1dBTUlE
IG1ldGFkYXRhIHNpZ25lciB2Mi4wMB4XDTE2MTIwNjA5MjgyMFoXDTM2MTIwNjA5
MjgyMFowfDELMAkGA1UEBhMCU0UxEjAQBgNVBAgMCVN0b2NraG9sbTESMBAGA1UE
BwwJU3RvY2tob2xtMQ4wDAYDVQQKDAVTVU5FVDEPMA0GA1UECwwGU1dBTUlEMSQw
IgYDVQQDDBtTV0FNSUQgbWV0YWRhdGEgc2lnbmVyIHYyLjAwggIiMA0GCSqGSIb3
DQEBAQUAA4ICDwAwggIKAoICAQDQVw72PnIo9QIeV439kQnPcxZh/LddKw86eIU+
nMfl4TpjSIyqTu4KJSnXbJyqXg+jQj3RzE9BUblpGrR7okmQwOh2nh+5A6SmyTOR
p7VEVT/Zw0GNnQi9gAW7J8Cy+Gnok4LeILI5u43hPylNKAnvs1+bo0ZlbHM6U5jm
6MlO+lrYA9dZzoPQqoCQbr3OweAaq5g8H54HuZacpYa3Q2GnUa4v+xywjntPdSQU
RTAbWWyJl3cHctX5+8UnX8nGCaxoBZqNp9PcEopyYJX8O1nrLumBMqu9Uh6GW1nx
OHfKDLvUoykG3Dm704ENVs88KaJXB1qQNsjdlm14UI9XCZbHfnFVnQ53ehsGFMha
Bf/Abd6v2wnhBLH/RxEUlw347qSeokw+SdDTSdW8jOEBiSqP/8BUzpCcbGlgAsVO
NKUS0K7IB2Bb79YYhyMvmJl24BGtkX+VM/mv47dxOtfzNFCMtUcJ2Dluv0xJG8xI
ot7umx/kbMBLuq7WdWELZJrgpt2bb9sXtYBpuxtGCW5g7+U7MNN1aKCiCSfq09YH
qu2DsU7HHAxEcGFXBiepBliCwZ24WLQh53bA3rihaln7SjdapT9VuSTpCvytb9RX
rq39mVuHMXvWYOG20XTV0+8U2vnsjAwsy28xPAcrLWRWoZbRJ+RoGp6L3GACq+t+
HPIukwIDAQABo1AwTjAdBgNVHQ4EFgQUQ2iqKQV/mMZDeJDtLXvy0Bsn/BQwHwYD
VR0jBBgwFoAUQ2iqKQV/mMZDeJDtLXvy0Bsn/BQwDAYDVR0TBAUwAwEB/zANBgkq
hkiG9w0BAQsFAAOCAgEAHviIAfS8viUN8Qk//U1p6Z1VK5718NeS7uqabug/SwhL
Vxtg/0x9FPJYf05HXj4moAf2W1ZLnhr0pnEPGDbdHAgDC672fpaAV7DO95d7xubc

(continues on next page)

5.3. Example 3 - Use an XRD file 19

http://mds.edugain.org
http://mds.edugain.org

Federation Feeder Documentation, Release 2.1.1

(continued from previous page)

rofR7Of2fehYSUZbXBWFiQ+xB5QfRsUFgB/qgHUolgn+4RXniiBYlWe6QJVncHx+
FtxD+vh1l5rLNkJgJLw2Lt3pbemSxUvv0CJtnK4jt2y95GsWGu1uSsVLrs0PR1Lj
kuxL6zZH4Pp9yjRDOUhbVYAnQ017mdcjvHYtp7c4GIWgyaBkDoMtU6fAt70QpeGj
XhecXk7Llx+oYNdZn14ZdFPRGMyAESLrT4Zf9M7QS3ypnWn/Ux0SwKWbnPUeRVbO
VZZ+M0jmdYK6o+UU5xH3peRWSJIjjRaKjbVlW5GgHwGFmQc/LN+va2jjThRsQWWt
zEwObijedInQ6wfL/VzFAwlWWoDAzKK9qnK4Rf3ORKkvhKrUa//2OYnZD0kHtHiC
OL+iFRLtJ/DQP5iZAF+M1Hta7acLmQ8v7Mn1ZR9lyDWzFx57VOKKtJ6RAmBvxOdP
8cIgBNvLAEdXh2knOLqYU/CeaGkxTD7Y0SEKx6OxEEdafba//MBkVLt4bRoLXts6
6JY25FqFh3eJZjR6h4W1NW8KnBWuy+ITGfXxoJSsX78/pwAY+v32jRxMZGUi1J4=
</ds:X509Certificate>

</ds:X509Data>
</ds:KeyInfo>

</Link>
</XRD>
<XRD>

<Subject>https://incommon.org</Subject>
<Link rel="urn:oasis:names:tc:SAML:2.0:metadata" href="http://md.incommon.org/

→˓InCommon/InCommon-metadata.xml">
<Title>InCommon Metadata (main aggregate)</Title>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:X509Data>
<ds:X509Certificate>

MIIDgTCCAmmgAwIBAgIJAJRJzvdpkmNaMA0GCSqGSIb3DQEBCwUAMFcxCzAJBgNV
BAYTAlVTMRUwEwYDVQQKDAxJbkNvbW1vbiBMTEMxMTAvBgNVBAMMKEluQ29tbW9u
IEZlZGVyYXRpb24gTWV0YWRhdGEgU2lnbmluZyBLZXkwHhcNMTMxMjE2MTkzNDU1
WhcNMzcxMjE4MTkzNDU1WjBXMQswCQYDVQQGEwJVUzEVMBMGA1UECgwMSW5Db21t
b24gTExDMTEwLwYDVQQDDChJbkNvbW1vbiBGZWRlcmF0aW9uIE1ldGFkYXRhIFNp
Z25pbmcgS2V5MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA0Chdkrn+
dG5Zj5L3UIw+xeWgNzm8ajw7/FyqRQ1SjD4Lfg2WCdlfjOrYGNnVZMCTfItoXTSp
g4rXxHQsykeNiYRu2+02uMS+1pnBqWjzdPJE0od+q8EbdvE6ShimjyNn0yQfGyQK
CNdYuc+75MIHsaIOAEtDZUST9Sd4oeU1zRjV2sGvUd+JFHveUAhRc0b+JEZfIEuq
/LIU9qxm/+gFaawlmojZPyOWZ1JlswbrrJYYyn10qgnJvjh9gZWXKjmPxqvHKJcA
TPhAh2gWGabWTXBJCckMe1hrHCl/vbDLCmz0/oYuoaSDzP6zE9YSA/xCplaHA0mo
C1Vs2H5MOQGlewIDAQABo1AwTjAdBgNVHQ4EFgQU5ij9YLU5zQ6K75kPgVpyQ2N/
lPswHwYDVR0jBBgwFoAU5ij9YLU5zQ6K75kPgVpyQ2N/lPswDAYDVR0TBAUwAwEB
/zANBgkqhkiG9w0BAQsFAAOCAQEAaQkEx9xvaLUt0PNLvHMtxXQPedCPw5xQBd2V
WOsWPYspRAOSNbU1VloY+xUkUKorYTogKUY1q+uh2gDIEazW0uZZaQvWPp8xdxWq
Dh96n5US06lszEc+Lj3dqdxWkXRRqEbjhBFh/utXaeyeSOtaX65GwD5svDHnJBcl
AGkzeRIXqxmYG+I2zMm/JYGzEnbwToyC7yF6Q8cQxOr37hEpqz+WN/x3qM2qyBLE
CQFjmlJrvRLkSL15PCZiu+xFNFd/zx6btDun5DBlfDS9DG+SHCNH6Nq+NfP+ZQ8C
GzP/3TaZPzMlKPDCjp0XOQfyQqFIXdwjPFTWjEusDBlm4qJAlQ==

</ds:X509Certificate>
</ds:X509Data>

</ds:KeyInfo>
</Link>

</XRD>
</XRDS>

The structure of the file should be fairly self-evident. Only links with @rel=”urn:oasis:names:tc:SAML:2.0:metadata”
will be parsed. If a KeyInfo with a X509Certificate element (usual base64-encoded certificate format) then this certifi-
cate is used to validate the signature on the downloaded SAML metadata. Note that while ‘load’ supports validation
based on certificate fingerprint the XRD format does not and you will have to include Base64-encoded certificates if
you want validation to work.

20 Chapter 5. Examples

urn:oasis:names:tc:SAML:2.0:metadata

Federation Feeder Documentation, Release 2.1.1

5.4 Example 4 - Sign using a PKCS#11 module

Fetch SWAMID metadata (and validate the signature using a certificate matching the given SHA256 fingerprint),
select the Identity Providers, tidy it up a bit and sign with the key with the label ‘signer’ in the PKCS#11 module
/usr/lib/libsofthsm.so. If a certificate is found in the same PKCS#11 object, that certificate is included in the Signature
object.

- load:
- http://mds.swamid.se/md/swamid-2.0.xml␣

→˓A6:78:5A:37:C9:C9:0C:25:AD:5F:1F:69:22:EF:76:7B:C9:78:67:67:3A:AF:4F:8B:EA:A1:A7:6D:A3:A8:E5:85
- select: "!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:

stylesheet: tidy.xsl
- sign:

key: pkcs11:///usr/lib/libsofthsm.so/signer
- publish: /tmp/idp.xml
- stats

Running this example requires some preparation. Run the ‘p11setup.sh’ script in the examples directory. This results
in a SoftHSM token being setup with the PIN ‘secret1’ and SO_PIN ‘secret2’. Now run pyFF (assuming you are using
a unix-like environment).

env PYKCS11PIN=secret1 SOFTHSM_CONF=softhsm.conf pyff --loglevel=DEBUG p11.fd

5.4. Example 4 - Sign using a PKCS#11 module 21

Federation Feeder Documentation, Release 2.1.1

22 Chapter 5. Examples

CHAPTER

SIX

EXTENDING PYFF

Not much here yet - come back later or UTSL

23

Federation Feeder Documentation, Release 2.1.1

24 Chapter 6. Extending pyFF

CHAPTER

SEVEN

FREQUENTLY ASKED QUESTIONS

7.1 I get ‘select is empty’ but I know my xpath should match. What is
wrong?

You may have forgotten to include namespaces in your xpath expression. For instance //EntityDescriptor won’t match
anything - //md:EntityDescriptor is what you want etc. PyFF is not a full XML processor and supports a set of well-
known XML namespaces commonly used in SAML metadata by prefix only. The full list of prefixes can be found in
pyff.constants

25

Federation Feeder Documentation, Release 2.1.1

26 Chapter 7. Frequently Asked Questions

27

Federation Feeder Documentation, Release 2.1.1

CHAPTER

EIGHT

PYFF PACKAGE

8.1 Submodules

8.1.1 pyff.api module

8.1.2 pyff.builtins module

8.1.3 pyff.constants module

8.1.4 pyff.decorators module

8.1.5 pyff.exceptions module

8.1.6 pyff.fetch module

8.1.7 pyff.locks module

8.1.8 pyff.logs module

8.1.9 pyff.md module

8.1.10 pyff.mdq module

8.1.11 pyff.merge_strategies module

8.1.12 pyff.parse module

8.1.13 pyff.pipes module

8.1.14 pyff.repo module

8.1.15 pyff.resource module

8.1.16 pyff.samlmd module

8.1.17 pyff.store module

8.1.18 pyff.tools module

8.1.19 pyff.utils module

8.1.20 pyff.wsgi module

The pyFF logo is the chemical symbol for sublimation - a process by which elements are transitioned from solid to gas
without becoming liquids.

28 Chapter 8. pyff package

INDEX

R
RFC

RFC 7033, 14

29

	Installation
	Before you install
	With Sitepackages
	Without Sitepackages

	Verifying
	Installing
	Upgrading
	Next Steps

	Quick Start Instructions
	Running pyFF
	Batch mode: pyff
	WSGI application: pyffd
	The structure of a pipeline

	Deploying pyFF
	Running pyFF in docker
	Building a docker image
	Running the docker image

	Running pyFF in production
	Scenario 1: all-in-one
	Scenario 2: offline signing

	Examples
	Example 1 - A simple pull
	Example 2 - Grab the IdPs from edugain
	Example 3 - Use an XRD file
	Example 4 - Sign using a PKCS#11 module

	Extending pyFF
	Frequently Asked Questions
	I get ‘select is empty’ but I know my xpath should match. What is wrong?

	pyff package
	Submodules
	pyff.api module
	pyff.builtins module
	pyff.constants module
	pyff.decorators module
	pyff.exceptions module
	pyff.fetch module
	pyff.locks module
	pyff.logs module
	pyff.md module
	pyff.mdq module
	pyff.merge_strategies module
	pyff.parse module
	pyff.pipes module
	pyff.repo module
	pyff.resource module
	pyff.samlmd module
	pyff.store module
	pyff.tools module
	pyff.utils module
	pyff.wsgi module

	Index

